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=rrL.  We need to act fast

IPSL-CM6A-LR climate model
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=prL  Concrete + Mortar are

irreplaceable

20
10 Steel Stainless S.
. i 7 Timber (biomass NOT neutral) -
copper Cementitious materials make up >50% 7 s fes b V"g? i
. 5 verage S.
of everything we produce. s Cement -'™M° Py i Al
e @ OPC Clay o *e*  Plastics
asphalt | . : S e Blends Brick & | 4. Y o e o
It is only for this reason they account for S Til _Jen¥ o e
8% of CO I 2, (FA or Slag) iles 5 Glass PVC, Nylon
o o) nn : = 17
aluminium | 0 2 annuaily 8 o7 Concrete I (virgin, recyéled, fiberglass)
U .
. . . . . - 05 Reinforced concrete Aluminium
ceramic tiles & Low intrinsic environmental impact. § e Lo/hi strength A 4 A Virgin, Recye)
& / Timber (biophass neutral) Average
. |§ e Gypsum General
||me | | i =" (and plasterboard) Particle board
.13 .
0.07 ] Precast Asphalt Fywoed
timber 0.05 Concrete HMA @ 4, 6 and 8% Bitumen
z:z; Concrete blocks bitumen (lo/hi values)
steel = "06 08 1 z 3 4 567810 20 30 405 70 100 200 300
clay fired bricks n— SEpRER
cemen titiOU S |
0 5 10 15 20 25 30 35



=pr.  Would it help to replace
concrete by other
materials?

Embodied carbon per m2 by building structure type for all
EU-ECB cases
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m ROck M, Sgrensen A, Tozan B, Steinmann J, Le Den X, Horup L H, Birgisdottir H
Towards EU embodied carbon benchmarks for buildings — Setting the baseline: A bottom-up approach, 2022, https://doi.org/10.5281/zenodo.5895051.



=PrL

Demand for cementin
the Global South

Historical and forecast cement supply per region
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We need solutions for people in developing countries
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e [l REPOIT fOr European Climate Foundation 2017

THE EUROPEAN CEMENT AND

CONCRETE INDUSTRY

Technology assessment for full decorbonization

of the industry by 2050

o
ETHzirich A

More

Reduce CO, Reduce Reduce Reduce o
. ! efficient
from clinker clinker cement concrete
: : : : o (re)use of
production in cement in concrete in building o
buildings
Efficient plants * Aggregate grading
Waste fuels Good admixtures
Alternate raw + Use filler
materials

Substantial reductions in emissions > 80% can be achieved
by working through the whole value chain

During this course we will look at several of these steps and considered them in
an LCA analysis, here | will look a bit more at the role of clinker and hydration
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Drivers for CO, reductions:

multiple approaches necessary

%

Global Cement and Concrete

Association
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Slag and fly ash will disappear even in
India, but calcined clay allows high
levels of substitution.

Small reduction potential of clinker
factor from GCCA due to the (doubtful)
Chinese clinker factor of 55%



=prL  IMission Possible Partnership

Net-Zero Scenario

Efficiency in design . Efficiency in concrete [ savings Cement Switching to B ccus [ ] Recarbonation Unabated
and construction production & binders? alternative fuels and
energy efficiency
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=prL  Much of the path to net
zero Is low cost

co

CO, savings

Efficiency in design and construction

Most emission reductions Efficiency in concrete production
can be achieved with costs
lower than 20 USD/t CO,

Savings in cement & binders

(overall zero cost)

Switching to alternative fuels and
energy efficiency

Carbon Capture, Usage and

Storage can help save CO,, Carbon Capture,

but at a very high cost Usage and Storage

° L

2 e S I >
Cost savings High cost
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Calculated 76% with these strategies
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At the very least it will be expensive

= 11

Carbon Capture and Storage

successful demonstration

projects

2020

Capture costs

pOSt- Transportation routes
combustion Reference scenario

0
capture COzEuropipe

oxy-fuel
process

2025 2030 long term

Scale of production >>> any “use” scenario
Reducing now will be a very sound investment Need to build network to transport to storage sites



=PrL
Origins of CO, emissions in clinker production:

CO, from the clinker remains around 90% through to the Concrete

1 tonne of clinker leads to
the emission

of 750 — 900 kg CO,
Average 850kg/t

m CaCo3
decomposition
(CHEMICAL)

B Fuel

CaCO3 = CaO + CO,

The production process is highly optimised up to Limestone
around 80% of thermodynamic limit. 80% of
It is estimated that < 2% further savings can be made here raw material

Use of waste fuels, which can be > 80%

12 = reduces the demand for fossil fuels
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Can we make cement with a
different chemistry?



=PrL  What is available on earth?

Mg rest <29,

8 elements make up

more than 98%
of the earth’s crust




=PrL

How does cement work?

@5 15



EPFL
How cement works:

Cement grain

We mix the grey cement
powder with water.

To start with the grains are
just floating about in the
water and we can cast the
concrete into moulds



=PFL
How cement works:

The cement grains
dissolve in the water

Cement grain



=Pr-L
How cement works:

The cement grains
dissolve in the water

And then precipitate
Hydrates — new solids
which have higher
volume and hold the
grains together:
creating a rigid solid



EPFL
What s available on earth?

Na20
Too soluble
K,0

Mg rest <2%
K

CaN

Fe203
Too insoluble in alkaline solutions
Mg0
Ca0
Si0, The most useful

Al,0,



EPFL
Hydraulic minerals in system Ca0-Si0,-Al,0;

SiO,

Portland
Cement

CaO Al,O3

Less CaO > less CO,

BUT, what sources of minerals are there which contain Al,O5
>> SiO, ?

Bauxite — localised, under increasing demand for Aluminium
production, EXPENSIVE

Even if all current bauxite production diverted would still only
replace 10-15% of current demand.

Even after nearly 50 years CSA production in China is <0.1%
of OPC
and falling



EPFL Composition of Composition
earth’s crust of ciment

S—Na
Mg rest rest
K Mg

Na

N

Fe Al

80% limestone
20% clay
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B 26/9/23

The advantages of limestone

= A concentrated source of calcium due to
geological slow carbonate silicate cycle

= Long time scales
 Lithosphere: Small fluxes, large reservoirs
° CaSl03 + C02 A s CaC03 + SlOz

Volcanic
<3 degassing
' 0.085
Carbonic acid
in rainwater
Carbonate
Island arc Midocean ridge HoCOg metamorphism
CO2 degassing CO2 degassing Si0s releases CO2
Calcite . . HCO3
precipitation Silicate weathering 2
l 0.125

P« Oohiolite

CaCO3
Calcium ; Kerogen
carbonate (12,500,000)
(65,000,000) pl* ’
_ Figure: Katerina Kostadinova

Slide
from
Ruben
Snellings

KULeuven

[numbers in Gt C per year, number in parentheses in Gt C; source: Kasting, 2019; Hilton & West, 2020]



=prL.  Basalt

Name of oxide Content, % by weight

S10, 46.5-51.5
ALO; 15.0-19.0
MgO 4.0-10.5
CaO 75-11.5
FCO+FCQO3 80-12.0
K20+N8.20 30-6.0
T10, 03-25
CI'zO:; 0.02-0.05
MnO < 0.1
Other Up to 100

Source research gate

23

Dissolve in acid

Precipitate oxide separately

Common technology
in mining industry

Make clinker with
uncarbonated calcium oxide

Estimated cost ~ $800 / ton
>80% reject materials



=prL.  Accelerated weathering:
ground basalt

https://un-do.com/enhanced-rock-weathering/
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Ca from Seawater?

400ppm, simply due to the enormous volumes to process
Cost >100x, present process

%5 25



=PrL

“Portland” cement
is an inevitable consequence of
the chemistry and geology of the earth

No alternative can be produced in quantities needed:

But a large fraction can be substituted
with less reactive materials (SCMs)
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Availability of SCMs

silica fume

waste glass Classic SCMs — fly ash and slag are only around 15% of current

cement production,

Vegetable ashes will drop to < 10% in near future

Natural Pozzolan
m Used m Available

I

I

[

I
Slag |
Fly ash ||

Portland cement

limestone

Calcined Clay
0 2000 4000 6000

Mt/vr



=PrL
There is no magic solution

= Blended with SCMs will be best solution for sustainable cements for
foreseeable future

= Only material really potentially available in viable quantities is calcined
clay.

= Synergetic reaction of calcined clay and limestone allows high levels of
substitution:
EPFL led LC2 project supported by SDC. Started 2013

Schweizerische Eidgenossenschaft Limesfone
Confédération suisse .
Confederazione Svizzera C0|c|ned

Confederaziun svizra

Clay
Swiss Agency for Development
and Cooperation SDC Cemenf
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What s LC?

Mass proportion (%)

100

80

60

40

20

Gypsum
m Limestone

m Calcined clay

s

PPC3O LC3-50 LC3-65

1

1

1

1

LC3 is a family of cements,
the figure refers to
the clinker content

Compressive strength

(MPa)

70

m 1 day

m 7 days
m 28 days
m 90 days

PC LC3-50

50% less clinker

40% less CO,

Similar strength

Better chloride resistance
Resistant to alkali silica reaction
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Comparison of calcined kaolinitic clay, slag and fly ash
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d 180d




=prL.  Possible to get early strength by
grinding clinker finer

| | PC(CEM1425R) (D4, 11.6 um)

| | LC3-50 w/ CEM | 42.5R (D5, 11.6 um)

|| LC3-50 w/ CEM | 52.5R (D5, 12.6 um)

] LC3-50 w/ ground CEM | 52.5R (Dys, 5.7 pm)
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Calcined Clay only SCM which can expand substitution

55
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35

% of the total wolume of cement
" "

Le3

Mineral components used to produce clink
Grey cement (124G)
coverage: 25% in 2010, 19% in 2017, 21% in 2018)
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mOthers
mPozzolana
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Looking again at clinker

22222222
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Répartition des masses
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Répartition des masses
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Répartition des masses
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EPFL Microstructure «idéale » du clinker

« alite »
CsS, impure

« belite »
C,S, impure

phases
«interstitielles»

« celite »

CsA, impure

+ solution solide de
ferrite

« C4AF »,

liquide pendant la
cuisson 38




=prL  Real cement

[ &

4 main phases, multi phase grains, rough, angular grains



=prL  Hydrated cement paste

Calcium hydroxide

Unreacted cement
Anhydrous

Inner C-S-H

Outer hydrates
C-S-H

AFm

AFt
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EPFL
Belite is a “waste of lime”

>60% of CO, emissions from limestone decarbonisation
CaCO; = CaO + CO,

Clinker compound: Chemical CO,
emissions, kg/tonne

Alite (C;S)
Belite (C,S)

Belite rich clinkers
~10% reduction more
than offset by slower
kinetics

80

[=2]
o

40 I

Compressive strength, MPa

0 | 1
728 920 180 360
age, days
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Belite is a “waste of lime”
C,S+5.3H=C_,SH, +13CH

& 80
£
2 60
Czs + 4-3H : C1_7SH4 + O-SCH § 40 /,/"
Less than V4 of CH! % 20
0 ¢
Highly reactive SCMs inhibit belite reaction
B-belite
30.0
100
ELS.O \’\\-\-‘ —a—Belite B % 60
g \ \ —+—Belite 8-51 -
® 100 . . @ 40 LGCMK
\‘\x ;; J.
R ——
0'00.1 1 10 100 1000 0 @ v é e L - y P il + o760
Axs Title 1 10 100
Kocaba thesis 2010 Time (d)

= Chitvoranund thesis 2021



=PFL  Typical clinker composition

€sS 67

C,S 15

C;A 5
« C,AF 6

»

Sio, 20,5 (19-21)
Al,0, 6 (@47
Fe,0, 2,5 (2-3)
CaO 64  (62-65)
MgO 1,2 (1-4)
SO, 2,8 (2,5-3,2)
K,O 0,5 (0,3-1)
Na,O 0,2 (0,2-0.5)
PaF(LOI) 1 (1-2
CaO libre 1  (0,51,5)
residinsol | 3 (02.0,4)

~10% of Ca tied up in

non reacting belite

44



=prL  Hydration process:
limitation

UOIIN|OAS 1eaH

||~ 28 days

>
~24 h

~ 50% reaction ~ 80% (+30) reaction
~ 25% strength ~ 80% (+65) strength




=prL The first 24 hours is all about the clinker phases
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Can we change
the reaction rate of clinker?

22222222
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1.16%Zn0 0.98%Zn0

Znin alite?

C3S grain

1 3

Age (Days)

[Bazzoni, 2014][Li, unpublished work]

28

2 3 \ / = Minor amounts of Zn in C5S Zn-C3S grain
S‘E) _ increases by double the
S i\/" heat released
S E
© g :
= = = Longer needles with Zn
|3 8 doping - Incorporation of Zn e
+— .
8 N C‘S‘H 500 nm
Alite 1.16% zinc
_q_vg Compressive strength enhanced until 3 days
% © 80 ECS el .
Q S, EECsD Reactivity enhancement in the Compressive strength
S = + .
o g @ main cement phase (CsS) enhanced until 3 days
— S 50
= 2 w0
S £ 2 “Zn in C3S increases the reactivity, therefore it has
£ 1 . . e ~
S g J potential to increase cement reactivity as well

cemnet - 07/03/2022 - A. Teixeira

48
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Heat flow [mW/(g]

Time [h]

1. Can the effects seen on C;S be translated into

more realistic systems?

Zn enhances alite hydration but not in real systems

= Understand the differences

* |sthere is a way to make it work? — Challenge
Thesis Andrea Teixeira

cemnet - 07/03/2022 - A. Teixeira



cPFL  Different Behavior

Alite System Polyclinker + 5% Gypsum
Intended 90% Alite - 10% C5A
8 -
7 1 4zn Alite Ref —90_10_1Zn0_5G
—Alite 1%Zn0 7 .
. —90_10_3Zn0_5G
'E 6 —Alite 2%Zn0 b= 6 - —90_10_5Zn0_5G
g . 3Zn —Alite 3%Zn0 g —s0_10.56
8 —Alite 4%Zn0 g 5 -
S 4 —Alite 5%Zn0 X
= 2Zn - 2 4
S 3 =
3 |
z 2 - 3
— L -
g1 5 °
. = 2 4 |
0 4 8 12 16 20 24 28 0 s : : : : ‘
Time [h] 0 12 24 36 48 60 72
H leased enhanced with ZnO fime [n]
[ ] . . .
eat released enhanced with Zn = Longer induction period

Linear effect up to 4%Zn0

Zn0 retards alite hydration in mm) Why?
_polyclinker

cemnet - 07/03/2022 - A. Teixeira



£PFL  What is The Main Problem?

Where is the Zn going?

Polyclinker 5%Zn0

Zn is mainly concentrated in the

interstitial phase.

cemnet - 07/03/2022 - A. Teixeira

%

XRD Quantification Polyclinker System

90

80

70

60

50

40

30

20

10

Linear increase in amorphous content,

5%Zn0 has 27% of this phase.

77.8 76.5
7439w <
30
27.7
60.6 27 = REF
m1%Zn
24 %0 o
m 3%Zn0O
21
18.7 ®5%Zn0O
18
X 15 13.7
12
9
6 5.6
0 L_=__ = ___=~ |

Amorphous

C3S M3
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Sulfation Correction

Hypothesis
Zinc is mainly concentrated in the “amorphous” phase. As its dissolution is

fast, there is a fast release of Zn ions to solution retarding alite reaction.

Polyclinker 5%Zn0O

More gypsum can be added to control the
reaction of the amorphous phase and

therefore, avoiding Zn release.

Heat Flow [mW/gcement]
O L N W b U1 OO N 00 O

cemnet - 07/03/2022 - A. Teixeira

10%G
5%G

—

12 24 36 48 60 72
Time [h] 53
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LABMANNY OF
!B ........ ~
eAEALY

2. Are there ways to retain Zn in alite?

= Cooling rate

" Interstitial phase composition (C,AF polyclinker)

= | ower amount of interstitial phase

cemnet - 07/03/2022 - A. Teixeira



=PFL  How to make it work?

W [P. Stutzman, 2004] [Discussion with A. Pisch]

cemnet - 07/03/2022 - A. Teixeira

Crystallization
L} High dependence on
& cooling rate
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] Slow cooling = more Zn in alite

ot LABCRATORY (8
t ‘3, COPNATRLC TRON
MAYEALS

Hypothesis
Zinc is mainly concentrated in the “amorphous” phase. As its dissolution is

fast, there is a fast release of Zn ions to solution retarding alite reaction.

Change in cooling rate from quenching to slow cooling (1250 °C)

Alite hydration is enhanced with slower cooling rate

More Zn in alite L . .
b b More zinc is in alite and less in interstitial phase

Zn in alite [%]

CsA-Polyclinker 5%Zn0

(o)

o
b
o

——— $C00_10_SIn0_5G

&
OO SCO0_10_5G

2.00 T $Q 70 —90_10_50

r > S -

: s 2 0
1.50 | S 50 [\ 5%znSlowC.

[ & 8 Y

L« : X 40 [\ \

[ 6 AR 1
1.00 T 30 " || \ REFFastC.

. 064 4 | ] 1 1

[ 20 | /| N\ \_ REFSiowC
0.50 10 I 2 |- ) b, R B

i 0 o —

0.00 L

-y
N

g

&
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sz __. ltCould Be Implemented in the Industry!

Cydone Preheaters

Rotary Xiln

Source: Modified from Gionnopoulos et ol, 2006

The flame can be placed to the front a little
so that the thermal shock is not that big,

giving time to ions to a better distribution

boler

cemnet - 07/03/2022 - A. Teixeira
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where now?
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